## CONTENTS

PAGE
Square and rectangular diffusers ..... 4
Quick selection tables ..... 5
General information ..... 11
Useful recommendations ..... 12
Accessories and mounting ..... 15
Diffuser and accessory combinations ..... 16
Off-standard rectangular diffusers ..... 17
Square perforated face diffusers 54-FR ..... 18
General dimensions ..... 19
Quick selection tables and useful recommendations ..... 20

Mech-Elec UK,
Unit 1, Bretts Farm, Romford Road, Aveley,
Essex,
RM15 4XD.


Tel: +44 2081339745
E-Mail: info@mech-elec.net
Web: http://www.mech-elec.net

## Square and rectangular diffusers 50 FR



Series, aluminium diffuser
$N^{\circ}$ of ways of blowing
Flap damper
Opposed blade damper
Without indication, not incorporated
Mounting bridge for fibre ducts
Mounting bridge for sheet ducts
Mounting system
Without indication, not incorporated
LxH, from 6 to 24 according to table LxH, from 150 to 600 according to table

## Description

Type 50 FR , square or rectangular aluminium diffuser.

## Finishes

Anodised aluminium in its natural colour. Special finishes available upon request.

## General dimensions

See page 16 and 17 for sizes. Other dimensions can be found in the drawings in the left column.

## 50-FR-4

4 Way square diffuser. Normalised neck according to ISO standard for duct mounting. The free opening should be 75 mm . more than the nominal dimension LxH. E.g. a $300 \times 300$ size diffuser would need a free opening in the false ceiling of $375 \times 375 \mathrm{~mm}$.

## 50-FR-4 + 59 MM

4 Way square diffuser with flap damper. For duct mounting a mounting bridge can be incorporated for fibre ducts (PM) or sheet ducts (PMC).

## 50-FR-4 + 0

4 Way square diffuser with opposed blade damper. Mounting of the diffuser to the duct by means of screws, rivets or adhesive tape. The use of the mounting system (SM) is recommended as an additional support in false ceilings.

## Identification

The central core of the diffuser can easily be removed by means of pressure clips to obtain access to the volume control damper and the duct connection. On page 16 the various combinations of diffusers and accessories (volume control and mounting) are indicated, independent on the number of ways of blowing.

## Quick Selection Table (Diffusers type 50 FR-4)

| Flow rate |  | Dim | $150 \times 150$ | $225 \times 225$ | $300 \times 300$ | $375 \times 375$ | $450 \times 450$ | 525x525 | 600x600 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Size | 6x6 | 9x9 | 12x12 | $15 \times 15$ | 18x18 | 21x21 | 24x24 |
| (m3/h) | (1/s) | $\mathrm{A}_{\mathrm{k}}$ | 0,0109 | 0,0244 | 0,0435 | 0,0679 | 0,0978 | 0,1331 | 0,1739 |
| 100 | 27,8 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} 2,5 \\ 0,5 \\ 4,5 \\ 18 \end{gathered}$ | $\begin{aligned} & 1,1 \\ & 0,3 \\ & 0,9 \end{aligned}$ |  |  |  |  |  |
| 120 | 33,3 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{aligned} & 3,1 \\ & 0,6 \\ & 6,5 \\ & 22 \end{aligned}$ | $\begin{gathered} \hline 1,4 \\ 0,4 \\ 1,3 \\ 6 \end{gathered}$ |  |  |  |  |  |
| 140 | 38,9 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} 3,6 \\ 0,7 \\ 8,9 \\ 26 \end{gathered}$ | $\begin{gathered} \hline 1,6 \\ 0,5 \\ 1,8 \\ 9 \end{gathered}$ |  |  |  |  |  |
| 160 | 44,4 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 4,1 \\ 0,8 \\ 11,6 \\ 29 \end{gathered}$ | $\begin{array}{r} \hline 1,8 \\ 0,5 \\ 2,3 \\ 13 \\ \hline \end{array}$ | $\begin{aligned} & 1,0 \\ & 0,4 \\ & 0,7 \end{aligned}$ |  |  |  |  |
| 180 | 50,0 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 4,6 \\ 0,9 \\ 14,7 \\ 32 \\ \hline \end{gathered}$ | $\begin{array}{r} \hline 2,0 \\ 0,6 \\ 2,9 \\ 16 \\ \hline \end{array}$ | $\begin{aligned} & \hline 1,1 \\ & 0,4 \\ & 0,9 \end{aligned}$ |  |  |  |  |
| 200 | 55,6 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 5,1 \\ 1,0 \\ 18,2 \\ 35 \end{gathered}$ | $\begin{gathered} 2,3 \\ 0,7 \\ 3,6 \\ 18 \end{gathered}$ | $\begin{gathered} \hline 1,3 \\ 0,5 \\ 1,1 \\ 6 \end{gathered}$ |  |  |  |  |
| 250 | 69,4 | $\begin{gathered} \mathrm{v}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 6,4 \\ 1,2 \\ 28,4 \\ 40 \end{gathered}$ | $\begin{aligned} & \hline 2,8 \\ & 0,8 \\ & 5,7 \\ & 24 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1,6 \\ & 0,6 \\ & 1,8 \\ & 12 \end{aligned}$ | $\begin{aligned} & 1,0 \\ & 0,5 \\ & 0,7 \end{aligned}$ |  |  |  |
| 300 | 83,3 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 7,6 \\ 1,5 \\ 40,9 \\ 45 \end{gathered}$ | $\begin{aligned} & 3,4 \\ & 1,0 \\ & 8,2 \\ & 28 \end{aligned}$ | $\begin{array}{r} \hline 1,9 \\ 0,7 \\ 2,6 \\ 16 \\ \hline \end{array}$ | $\begin{gathered} 1,2 \\ 0,6 \\ 1,1 \\ 7 \end{gathered}$ |  |  |  |
| 350 | 97,2 | $\begin{gathered} V_{k} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 8,9 \\ 1,7 \\ 55,7 \\ 49 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 4,0 \\ 1,2 \\ 11,1 \\ 32 \end{gathered}$ | $\begin{aligned} & \hline 2,2 \\ & 0,9 \\ & 3,5 \\ & 20 \end{aligned}$ | $\begin{aligned} & \hline 1,4 \\ & 0,7 \\ & 1,4 \\ & 11 \end{aligned}$ | $\begin{aligned} & \hline 1,0 \\ & 0,6 \\ & 0,7 \end{aligned}$ |  |  |
| 400 | 111,1 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} \hline 4,6 \\ 1,3 \\ 14,5 \\ 35 \end{gathered}$ | $\begin{aligned} & \hline 2,6 \\ & 1,0 \\ & 4,6 \\ & 24 \end{aligned}$ | $\begin{aligned} & 1,6 \\ & 0,8 \\ & 1,9 \\ & 15 \end{aligned}$ | $\begin{gathered} \hline 1,1 \\ 0,7 \\ 0,9 \\ 7 \end{gathered}$ |  |  |
| 450 | 125,0 | $\begin{gathered} V_{k} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} \hline 5,1 \\ 1,5 \\ 18,4 \\ 38 \end{gathered}$ | $\begin{gathered} 2,9 \\ 1,1 \\ 5,8 \\ 27 \end{gathered}$ | $\begin{array}{r} \hline 1,8 \\ 0,9 \\ 2,4 \\ 17 \end{array}$ | $\begin{aligned} & \hline 1,3 \\ & 0,7 \\ & 1,1 \\ & 10 \end{aligned}$ |  |  |
| 500 | 138,9 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} \hline 5,7 \\ 1,7 \\ 22,7 \\ 41 \end{gathered}$ | $\begin{aligned} & 3,2 \\ & 1,2 \\ & 7,1 \\ & 29 \end{aligned}$ | $\begin{aligned} & \hline 2,0 \\ & 1,0 \\ & 2,9 \\ & 20 \end{aligned}$ | $\begin{aligned} & \hline 1,4 \\ & 0,8 \\ & 1,4 \\ & 13 \end{aligned}$ |  |  |
| 600 | 166,7 | $\begin{gathered} \hline V_{k} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} \hline 6,8 \\ 2,0 \\ 32,7 \\ 45 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 3,8 \\ 1,5 \\ 10,3 \\ 34 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 2,5 \\ & 1,2 \\ & 4,2 \\ & 25 \\ & \hline \end{aligned}$ | $\begin{array}{r} \hline 1,7 \\ 1,0 \\ 2,0 \\ 17 \\ \hline \end{array}$ | $\begin{aligned} & 1,3 \\ & 0,9 \\ & 1,1 \\ & 11 \\ & \hline \end{aligned}$ |  |


| Flow rate |  | Dim | 150x150 | 225x225 | 300x300 | 375x375 | 450x450 | 525x525 | 600x600 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Size | 6x6 | $9 \times 9$ | $12 \times 12$ | 15x15 | $18 \times 18$ | 21×21 | $24 \times 24$ |
| ( $\mathrm{m}^{3} / \mathrm{h}$ ) | (1/s) | $\mathrm{A}_{\mathrm{k}}$ | 0,0109 | 0,0244 | 0,0435 | 0,0679 | 0,0978 | 0,1331 | 0,1739 |
| 700 | 194,4 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} 8,0 \\ 2,3 \\ 44,5 \\ 49 \end{gathered}$ | $\begin{gathered} 4,5 \\ 1,7 \\ 14,0 \\ 37 \end{gathered}$ | $\begin{gathered} 2,9 \\ 1,4 \\ 5,7 \\ 28 \end{gathered}$ | $\begin{aligned} & 2,0 \\ & 1,2 \\ & 2,8 \\ & 21 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,5 \\ & 1,0 \\ & 1,5 \\ & 15 \end{aligned}$ | $\begin{gathered} 1,1 \\ 0,9 \\ 0,9 \\ 9 \end{gathered}$ |
| 800 | 222,2 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  |  | $\begin{gathered} 5,1 \\ 2,0 \\ 18,3 \\ 41 \end{gathered}$ | $\begin{aligned} & 3,3 \\ & 1,6 \\ & 7,5 \\ & 32 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2,3 \\ & 1,3 \\ & 3,6 \\ & 24 \\ & \hline \end{aligned}$ | $\begin{gathered} 1,7 \\ 1,1 \\ 2,0 \\ 18 \end{gathered}$ | $\begin{aligned} & 1,3 \\ & 1,0 \\ & 1,1 \\ & 12 \end{aligned}$ |
| 900 | 250,0 | $\begin{gathered} \hline \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  |  | $\begin{gathered} 5,7 \\ 2,2 \\ 23,1 \\ 44 \end{gathered}$ | $\begin{aligned} & 3,7 \\ & 1,8 \\ & 9,5 \\ & 35 \end{aligned}$ | $\begin{aligned} & 2,6 \\ & 1,5 \\ & 4,6 \\ & 27 \end{aligned}$ | $\begin{aligned} & 1,9 \\ & 1,3 \\ & 2,5 \\ & 21 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,4 \\ & 1,1 \\ & 1,4 \\ & 15 \end{aligned}$ |
| 1000 | 277,8 | $\begin{gathered} \hline V_{k} \\ x^{\prime} \\ p_{t} \\ N R \end{gathered}$ |  |  | $\begin{gathered} \hline 6,4 \\ 2,5 \\ 28,5 \\ 46 \end{gathered}$ | $\begin{gathered} \hline 4,1 \\ 2,0 \\ 11,7 \\ 37 \end{gathered}$ | $\begin{aligned} & \hline 2,8 \\ & 1,7 \\ & 5,6 \\ & 30 \end{aligned}$ | $\begin{gathered} \hline 2,1 \\ 1,4 \\ 3,0 \\ 23 \end{gathered}$ | $\begin{aligned} & 1,6 \\ & 1,2 \\ & 1,8 \\ & 18 \end{aligned}$ |
| 1200 | 333,3 | $\begin{gathered} V_{k} \\ x^{\prime} \\ p_{t} \\ N R \end{gathered}$ |  |  | $\begin{gathered} 7,7 \\ 3,0 \\ 41,1 \\ 51 \\ \hline \end{gathered}$ | $\begin{gathered} 4,9 \\ 2,4 \\ 16,9 \\ 42 \end{gathered}$ | $\begin{aligned} & 3,4 \\ & 2,0 \\ & 8,1 \\ & 34 \end{aligned}$ | $\begin{gathered} 2,5 \\ 1,7 \\ 4,4 \\ 28 \end{gathered}$ | $\begin{aligned} & 1,9 \\ & 1,5 \\ & 2,6 \\ & 23 \\ & \hline \end{aligned}$ |
| 1400 | 388,9 | $\begin{gathered} V_{k} \\ x^{\prime} \\ p_{t} \\ N R \end{gathered}$ |  |  |  | $\begin{gathered} 5,7 \\ 2,8 \\ 23,0 \\ 46 \end{gathered}$ | $\begin{gathered} 4,0 \\ 2,3 \\ 11,1 \\ 38 \\ \hline \end{gathered}$ | $\begin{aligned} & 2,9 \\ & 2,0 \\ & 6,0 \\ & 32 \end{aligned}$ | $\begin{aligned} & 2,2 \\ & 1,7 \\ & 3,5 \\ & 26 \\ & \hline \end{aligned}$ |
| 1600 | 444,4 | $\begin{gathered} \hline \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \\ \hline \end{gathered}$ |  |  |  | $\begin{gathered} 6,5 \\ 3,2 \\ 30,0 \\ 49 \\ \hline \end{gathered}$ | $\begin{gathered} 4,5 \\ 2,7 \\ 14,5 \\ 41 \end{gathered}$ | $\begin{array}{r} \hline 3,3 \\ 2,3 \\ 7,8 \\ 35 \\ \hline \end{array}$ | $\begin{aligned} & \hline 2,6 \\ & 2,0 \\ & 4,6 \\ & 30 \\ & \hline \end{aligned}$ |
| 1800 | 500,0 | $\begin{gathered} \hline V_{k} \\ x^{\prime} \\ p_{t} \\ N R \end{gathered}$ |  |  |  | $\begin{gathered} 7,4 \\ 3,6 \\ 38,0 \\ 52 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 5,1 \\ 3,0 \\ 18,3 \\ 44 \end{gathered}$ | $\begin{aligned} & \hline 3,8 \\ & 2,6 \\ & 9,9 \\ & 38 \end{aligned}$ | $\begin{aligned} & \hline 2,9 \\ & 2,2 \\ & 5,8 \\ & 33 \end{aligned}$ |
| 2000 | 555,6 | $\begin{gathered} V_{k} \\ x^{\prime} \\ p_{t} \\ N R \end{gathered}$ |  |  |  |  | $\begin{gathered} 5,7 \\ 3,3 \\ 22,6 \\ 47 \end{gathered}$ | $\begin{gathered} \hline 4,2 \\ 2,9 \\ 12,2 \\ 41 \\ \hline \end{gathered}$ | $\begin{aligned} & 3,2 \\ & 2,5 \\ & 7,1 \\ & 35 \\ & \hline \end{aligned}$ |
| 2500 | 694,4 | $\begin{gathered} \hline \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  |  |  |  | $\begin{gathered} \hline 7,1 \\ 4,2 \\ 35,3 \\ 52 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 5,2 \\ 3,6 \\ 19,1 \\ 46 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 4,0 \\ 3,1 \\ 11,2 \\ 41 \end{gathered}$ |
| 3000 | 833,3 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \\ \hline \end{gathered}$ |  |  |  |  |  | $\begin{gathered} 6,3 \\ 4,3 \\ 27,4 \\ 51 \end{gathered}$ | $\begin{gathered} 4,8 \\ 3,7 \\ 16,1 \\ 45 \end{gathered}$ |
| 3500 | 972,2 | $\begin{gathered} V_{k} \\ x^{\prime} \\ p_{t} \\ N R \end{gathered}$ |  |  |  |  |  | $\begin{gathered} 7,3 \\ 5,0 \\ 37,3 \\ 54 \end{gathered}$ | $\begin{gathered} 5,6 \\ 4,4 \\ 21,9 \\ 49 \end{gathered}$ |
| 4000 | 1111,1 | $\begin{gathered} \hline \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \\ \hline \end{gathered}$ |  |  |  |  |  | $\begin{gathered} \hline 8,3 \\ 5,7 \\ 48,8 \\ 58 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 6,4 \\ 5,0 \\ 28,6 \\ 52 \\ \hline \end{gathered}$ |

## Symbols:

$$
\begin{aligned}
V_{k} & =\text { Effective velocity in } \mathrm{m} / \mathrm{s} \\
X & =\text { Throw in } \mathrm{m} \\
P_{\mathrm{t}} & =\text { Total pressure in } \mathrm{Pa} \\
\mathrm{NR} & =\text { Noise level index in } \mathrm{dB}
\end{aligned}
$$

The selection should take into account, for a given air flow rate, the noise level and the throw. The throws given in the table correspond to a maximum velocity in the occupied zone of $0,25 \mathrm{~m} / \mathrm{s}$.


## 50-FR-2-L

Rectangular diffuser with central core in two ways.

## 50-FR-3

Square diffuser with central core in three ways.

## Quick Selection Table (Diffusers type 50 FR-2)

| Flow rate |  | Dim | 150x150 | $225 \times 225$ | $300 \times 300$ | $375 \times 375$ | $450 \times 450$ | $525 \times 525$ | $600 \times 600$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Size | 6x6 | 9x9 | 12x12 | 15x15 | 18x18 | 21×21 | 24×24 |
| ( $\mathrm{m}^{3} / \mathrm{h}$ ) | (l/s) | $\mathrm{A}_{\mathrm{k}}$ | 0,0096 | 0,0215 | 0,0383 | 0,0598 | 0,0863 | 0,1174 | 0,1534 |
| 50 | 13,9 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{aligned} & 1,4 \\ & 0,9 \\ & 1,5 \end{aligned}$ |  |  |  |  |  |  |
| 60 | 16,7 | $\begin{gathered} V_{k} \\ X \\ p_{t} \\ N R \end{gathered}$ | $\begin{gathered} 1,7 \\ 1,1 \\ 2,1 \\ 9 \end{gathered}$ |  |  |  |  |  |  |
| 70 | 19,4 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \\ \hline \end{gathered}$ | $\begin{array}{r} 2,0 \\ 1,2 \\ 2,9 \\ 13 \end{array}$ | $\begin{aligned} & 0,9 \\ & 0,8 \\ & 0,6 \end{aligned}$ |  |  |  |  |  |
| 80 | 22,2 | $\begin{gathered} V_{k} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} 2,3 \\ 1,4 \\ 3,8 \\ 16 \end{gathered}$ | $\begin{aligned} & 1,0 \\ & 0,9 \\ & 0,7 \end{aligned}$ |  |  |  |  |  |
| 90 | 25,0 | $\begin{gathered} V_{k} \\ X \\ p_{t} \\ N R \end{gathered}$ | $\begin{array}{r} 2,6 \\ 1,6 \\ 4,7 \\ 19 \end{array}$ | $\begin{aligned} & 1,2 \\ & 1,1 \\ & 0,9 \end{aligned}$ |  |  |  |  |  |
| 100 | 27,8 | $\begin{gathered} V_{k} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{aligned} & 2,9 \\ & 1,8 \\ & 5,9 \\ & 22 \end{aligned}$ | $\begin{gathered} 1,3 \\ 1,2 \\ 1,2 \\ 5 \end{gathered}$ |  |  |  |  |  |
| 120 | 33,3 | $\begin{gathered} V_{k} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} 3,5 \\ 2,1 \\ 8,4 \\ 26 \end{gathered}$ | $\begin{gathered} 1,6 \\ 1,4 \\ 1,7 \\ 9 \end{gathered}$ | $\begin{aligned} & 0,9 \\ & 1,1 \\ & 0,5 \end{aligned}$ |  |  |  |  |
| 140 | 38,9 | $\begin{gathered} \hline \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \\ \hline \end{gathered}$ | $\begin{gathered} \hline 4,1 \\ 2,5 \\ 11,5 \\ 30 \\ \hline \end{gathered}$ | $\begin{array}{r} \hline 1,8 \\ 1,6 \\ 2,3 \\ 13 \end{array}$ | $\begin{aligned} & 1,0 \\ & 1,2 \\ & 0,7 \end{aligned}$ |  |  |  |  |
| 160 | 44,4 | $\begin{gathered} V_{k} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 4,6 \\ 2,8 \\ 15,0 \\ 33 \\ \hline \end{gathered}$ | $\begin{array}{r} 2,1 \\ 1,9 \\ 3,0 \\ 16 \\ \hline \end{array}$ | $\begin{aligned} & 1,2 \\ & 1,4 \\ & 0,9 \end{aligned}$ |  |  |  |  |
| 180 | 50,0 | $\begin{gathered} V_{k} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 5,2 \\ 3,2 \\ 19,0 \\ 36 \end{gathered}$ | $\begin{array}{r} \hline 2,3 \\ 2,1 \\ 3,8 \\ 19 \end{array}$ | $\begin{gathered} 1,3 \\ 1,6 \\ 1,2 \\ 7 \end{gathered}$ |  |  |  |  |
| 200 | 55,6 | $\begin{gathered} V_{k} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} 5,8 \\ 3,5 \\ 23,4 \\ 39 \end{gathered}$ | $\begin{aligned} & \hline 2,6 \\ & 2,3 \\ & 4,7 \\ & 22 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,5 \\ & 1,8 \\ & 1,5 \\ & 10 \end{aligned}$ | $\begin{aligned} & 0,9 \\ & 1,4 \\ & 0,6 \end{aligned}$ |  |  |  |
| 250 | 69,4 | $\begin{gathered} V_{k} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 7,2 \\ 4,4 \\ 36,6 \\ 44 \\ \hline \end{gathered}$ | $\begin{aligned} & 3,2 \\ & 2,9 \\ & 7,3 \\ & 28 \end{aligned}$ | $\begin{gathered} \hline 1,8 \\ 2,2 \\ 2,3 \\ 15 \end{gathered}$ | $\begin{gathered} \hline 1,2 \\ 1,8 \\ 0,9 \\ 6 \end{gathered}$ | $\begin{aligned} & 0,8 \\ & 1,5 \\ & 0,5 \end{aligned}$ |  |  |
| 300 | 83,3 | $\begin{gathered} V_{k} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \\ \hline \end{gathered}$ |  | $\begin{gathered} 3,9 \\ 3,5 \\ 10,5 \\ 32 \end{gathered}$ | $\begin{aligned} & \hline 2,2 \\ & 2,6 \\ & 3,3 \\ & 20 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,4 \\ & 2,1 \\ & 1,4 \\ & 11 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,0 \\ & 1,8 \\ & 0,7 \end{aligned}$ |  |  |


| Flow rate |  | Dim | 150x150 | 225x225 | 300x300 | 375x375 | 450x450 | $525 \times 525$ | 600x600 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Size | 6x6 | $9 \times 9$ | 12x12 | 15x15 | 18x18 | 21×21 | $24 \times 24$ |
| ( $\mathrm{m}^{3} / \mathrm{h}$ ) | (1/s) | $\mathrm{A}_{\mathrm{k}}$ | 0,0096 | 0,0215 | 0,0383 | 0,0598 | 0,0863 | 0,1174 | 0,1534 |
| 350 | 97,2 | $\begin{gathered} V_{k} \\ x^{\prime} \\ p_{t} \\ N R \end{gathered}$ |  | $\begin{gathered} \hline 4,5 \\ 4,1 \\ 14,3 \\ 36 \end{gathered}$ | $\begin{aligned} & \hline 2,5 \\ & 3,1 \\ & 4,5 \\ & 24 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,6 \\ & 2,5 \\ & 1,9 \\ & 15 \\ & \hline \end{aligned}$ | $\begin{gathered} 1,1 \\ 2,0 \\ 0,9 \\ 7 \end{gathered}$ | $\begin{aligned} & 0,8 \\ & 1,8 \\ & 0,5 \end{aligned}$ |  |
| 400 | 111,1 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} \hline 5,2 \\ 4,7 \\ 18,7 \\ 39 \\ \hline \end{gathered}$ | $\begin{aligned} & 2,9 \\ & 3,5 \\ & 5,9 \\ & 27 \end{aligned}$ | $\begin{aligned} & 1,9 \\ & 2,8 \\ & 2,4 \\ & 18 \end{aligned}$ | $\begin{aligned} & 1,3 \\ & 2,3 \\ & 1,2 \\ & 10 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0,9 \\ & 2,0 \\ & 0,6 \end{aligned}$ |  |
| 500 | 138,9 | $\begin{gathered} V_{k} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} 6,5 \\ 5,8 \\ 29,2 \\ 45 \\ \hline \end{gathered}$ | $\begin{aligned} & 3,6 \\ & 4,4 \\ & 9,2 \\ & 33 \end{aligned}$ | $\begin{aligned} & 2,3 \\ & 3,5 \\ & 3,8 \\ & 23 \end{aligned}$ | $\begin{aligned} & 1,6 \\ & 2,9 \\ & 1,8 \\ & 16 \end{aligned}$ | $\begin{gathered} 1,2 \\ 2,5 \\ 1,0 \\ 9 \end{gathered}$ | $\begin{aligned} & 0,9 \\ & 2,2 \\ & 0,6 \end{aligned}$ |
| 600 | 166,7 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \\ \hline \end{gathered}$ |  |  | $\begin{gathered} \hline 4,4 \\ 5,3 \\ 13,3 \\ 37 \end{gathered}$ | $\begin{aligned} & \hline 2,8 \\ & 4,2 \\ & 5,4 \\ & 28 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,9 \\ & 3,5 \\ & 2,6 \\ & 20 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,4 \\ & 3,0 \\ & 1,4 \\ & 14 \\ & \hline \end{aligned}$ | $\begin{gathered} 1,1 \\ 2,6 \\ 0,8 \\ 8 \\ \hline \end{gathered}$ |
| 700 | 194,4 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  |  | $\begin{gathered} 5,1 \\ 6,1 \\ 18,0 \\ 41 \end{gathered}$ | $\begin{aligned} & \hline 3,3 \\ & 4,9 \\ & 7,4 \\ & 32 \end{aligned}$ | $\begin{aligned} & \hline 2,3 \\ & 4,1 \\ & 3,6 \\ & 24 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,7 \\ & 3,5 \\ & 1,9 \\ & 18 \end{aligned}$ | $\begin{aligned} & 1,3 \\ & 3,1 \\ & 1,1 \\ & 12 \\ & \hline \end{aligned}$ |
| 800 | 222,2 | $\begin{gathered} V_{k} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  |  | $\begin{gathered} \hline 5,8 \\ 7,0 \\ 23,6 \\ 44 \\ \hline \end{gathered}$ | $\begin{aligned} & 3,7 \\ & 5,6 \\ & 9,7 \\ & 35 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2,6 \\ & 4,7 \\ & 4,6 \\ & 27 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,9 \\ & 4,0 \\ & 2,5 \\ & 21 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,4 \\ & 3,5 \\ & 1,5 \\ & 15 \\ & \hline \end{aligned}$ |
| 900 | 250,0 | $\begin{gathered} V_{k} \\ x^{\prime} \\ p_{t} \\ N R \end{gathered}$ |  |  | $\begin{gathered} \hline 6,5 \\ 7,9 \\ 29,8 \\ 47 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 4,2 \\ 6,3 \\ 12,2 \\ 38 \end{gathered}$ | $\begin{aligned} & \hline 2,9 \\ & 5,3 \\ & 5,9 \\ & 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 2,1 \\ & 4,5 \\ & 3,2 \\ & 24 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,6 \\ & 3,9 \\ & 1,9 \\ & 18 \\ & \hline \end{aligned}$ |
| 1000 | 277,8 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  |  |  | $\begin{gathered} 4,6 \\ 7,0 \\ 15,1 \\ 41 \\ \hline \end{gathered}$ | $\begin{array}{r} \hline 3,2 \\ 5,8 \\ 7,3 \\ 33 \\ \hline \end{array}$ | $\begin{aligned} & 2,4 \\ & 5,0 \\ & 3,9 \\ & 26 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,8 \\ & 4,4 \\ & 2,3 \\ & 21 \\ & \hline \end{aligned}$ |
| 1200 | 333,3 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  |  |  | $\begin{gathered} 5,6 \\ 8,4 \\ 21,7 \\ 45 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 3,9 \\ 7,0 \\ 10,4 \\ 37 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 2,8 \\ & 6,0 \\ & 5,6 \\ & 31 \end{aligned}$ | $\begin{aligned} & \hline 2,2 \\ & 5,3 \\ & 3,3 \\ & 25 \\ & \hline \end{aligned}$ |
| 1400 | 388,9 | $\begin{gathered} V_{k} \\ x^{\prime} \\ p_{t} \\ N R \end{gathered}$ |  |  |  | $\begin{gathered} 6,5 \\ 9,8 \\ 29,6 \\ 49 \\ \hline \end{gathered}$ | $\begin{gathered} 4,5 \\ 8,2 \\ 14,2 \\ 41 \end{gathered}$ | $\begin{aligned} & \hline 3,3 \\ & 7,0 \\ & 7,7 \\ & 35 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2,5 \\ & 6,1 \\ & 4,5 \\ & 29 \\ & \hline \end{aligned}$ |
| 1600 | 444,4 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \\ \hline \end{gathered}$ |  |  |  |  | $\begin{gathered} \hline 5,1 \\ 9,3 \\ 18,6 \\ 44 \end{gathered}$ | $\begin{gathered} \hline 3,8 \\ 8,0 \\ 10,0 \\ 38 \end{gathered}$ | $\begin{aligned} & \hline 2,9 \\ & 7,0 \\ & 5,9 \\ & 33 \\ & \hline \end{aligned}$ |
| 1800 | 500,0 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \\ \hline \end{gathered}$ |  |  |  |  | $\begin{gathered} \hline 5,8 \\ 10,5 \\ 23,5 \\ 47 \\ \hline \end{gathered}$ | $\begin{gathered} 4,3 \\ 9,0 \\ 12,7 \\ 41 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 3,3 \\ & 7,9 \\ & 7,4 \\ & 35 \\ & \hline \end{aligned}$ |
| 2000 | 555,6 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  |  |  |  | $\begin{gathered} \hline 6,4 \\ 11,7 \\ 29,0 \\ 50 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 4,7 \\ 10,0 \\ 15,7 \\ 44 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 3,6 \\ & 8,8 \\ & 9,2 \\ & 38 \\ & \hline \end{aligned}$ |

## Symbols:

$V_{k}=$ Effective velocity in $\mathrm{m} / \mathrm{s}$
$X^{k}=$ Throw in $m$
$P_{t}=$ Total pressure in Pa
$N R=$ Noise level index in dB

The selection should take into account, for a given air flow rate, the noise level and the throw. The throws given in the table correspond to a maximum velocity in the occupied zone of $0,25 \mathrm{~m} / \mathrm{s}$.

## Quick Selection Table (Diffusers type 50 FR-2)

| Flow rate |  | Dim | 150x150 | $225 \times 225$ | $300 \times 300$ | $375 \times 375$ | $450 \times 450$ | $525 \times 525$ | 600x600 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Size | 6x6 | 9x9 | 12x12 | 15x15 | 18x18 | $21 \times 21$ | 24×24 |
| ( $\mathrm{m}^{3} / \mathrm{h}$ ) | (1/s) | $\mathrm{A}_{\mathrm{k}}$ | 0,0093 | 0,0209 | 0,0373 | 0,0582 | 0,0838 | 0,1141 | 0,1490 |
| 100 | 27,8 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{aligned} & 3,0 \\ & 0,6 \\ & 6,7 \\ & 22 \end{aligned}$ | $\begin{gathered} \hline 1,3 \\ 0,4 \\ 1,3 \\ 5 \end{gathered}$ |  |  |  |  |  |
| 120 | 33,3 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} 3,6 \\ 0,7 \\ 9,6 \\ 26 \end{gathered}$ | $\begin{gathered} 1,6 \\ 0,5 \\ 1,9 \\ 10 \end{gathered}$ |  |  |  |  |  |
| 140 | 38,9 | $\begin{gathered} \mathrm{v}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} 4,2 \\ 0,9 \\ 13,1 \\ 30 \end{gathered}$ | $\begin{gathered} 1,9 \\ 0,6 \\ 2,6 \\ 14 \end{gathered}$ | $\begin{aligned} & 1,0 \\ & 0,4 \\ & 0,8 \end{aligned}$ |  |  |  |  |
| 160 | 44,4 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 4,8 \\ 1,0 \\ 17,1 \\ 33 \end{gathered}$ | $\begin{gathered} 2,1 \\ 0,7 \\ 3,4 \\ 17 \end{gathered}$ | $\begin{gathered} \hline 1,2 \\ 0,5 \\ 1,1 \\ 5 \end{gathered}$ |  |  |  |  |
| 180 | 50,0 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 5,4 \\ 1,1 \\ 21,7 \\ 36 \end{gathered}$ | $\begin{gathered} \hline 2,4 \\ 0,7 \\ 4,3 \\ 20 \end{gathered}$ | $\begin{gathered} \hline 1,3 \\ 0,5 \\ 1,3 \\ 8 \end{gathered}$ |  |  |  |  |
| 200 | 55,6 | $\begin{gathered} V_{k} \\ x \\ p_{t} \\ N R \end{gathered}$ | $\begin{gathered} \hline 6,0 \\ 1,2 \\ 26,8 \\ 39 \end{gathered}$ | $\begin{aligned} & \hline 2,7 \\ & 0,8 \\ & 5,3 \\ & 22 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1,5 \\ & 0,6 \\ & 1,7 \\ & 11 \end{aligned}$ | $\begin{aligned} & 1,0 \\ & 0,5 \\ & 0,7 \end{aligned}$ |  |  |  |
| 250 | 69,4 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 7,5 \\ 1,5 \\ 41,8 \\ 44 \end{gathered}$ | $\begin{aligned} & 3,3 \\ & 1,0 \\ & 8,3 \\ & 28 \end{aligned}$ | $\begin{gathered} 1,9 \\ 0,8 \\ 2,6 \\ 16 \end{gathered}$ | $\begin{gathered} 1,2 \\ 0,6 \\ 1,1 \\ 7 \end{gathered}$ |  |  |  |
| 300 | 83,3 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{x} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} \hline 4,0 \\ 1,2 \\ 11,9 \\ 32 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 2,2 \\ & 0,9 \\ & 3,7 \\ & 21 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1,4 \\ & 0,7 \\ & 1,5 \\ & 12 \end{aligned}$ | $\begin{aligned} & 1,0 \\ & 0,6 \\ & 0,7 \end{aligned}$ |  |  |
| 350 | 97,2 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} \hline 4,7 \\ 1,4 \\ 16,2 \\ 36 \end{gathered}$ | $\begin{aligned} & \hline 2,6 \\ & 1,1 \\ & 5,1 \\ & 24 \end{aligned}$ | $\begin{array}{r} \hline 1,7 \\ 0,9 \\ 2,1 \\ 15 \end{array}$ | $\begin{gathered} \hline 1,2 \\ 0,7 \\ 1,0 \\ 8 \end{gathered}$ |  |  |
| 400 | 111,1 | $\begin{gathered} V_{k} \\ x \\ p_{t} \\ N R \end{gathered}$ |  | $\begin{gathered} \hline 5,3 \\ 1,6 \\ 21,2 \\ 40 \end{gathered}$ | $\begin{aligned} & \hline 3,0 \\ & 1,2 \\ & 6,7 \\ & 28 \\ & \hline \end{aligned}$ | $\begin{gathered} 1,9 \\ 1,0 \\ 2,7 \\ 19 \end{gathered}$ | $\begin{aligned} & \hline 1,3 \\ & 0,8 \\ & 1,3 \\ & 11 \\ & \hline \end{aligned}$ | $\begin{gathered} \hline 1,0 \\ 0,7 \\ 0,7 \\ 5 \end{gathered}$ |  |
| 450 | 125,0 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} 6,0 \\ 1,8 \\ 26,8 \\ 42 \end{gathered}$ | $\begin{gathered} \hline 3,4 \\ 1,4 \\ 8,4 \\ 31 \end{gathered}$ | $\begin{array}{r} 2,1 \\ 1,1 \\ 3,5 \\ 22 \end{array}$ | $\begin{aligned} & 1,5 \\ & 0,9 \\ & 1,7 \\ & 14 \end{aligned}$ | $\begin{gathered} \hline 1,1 \\ 0,8 \\ 0,9 \\ 8 \end{gathered}$ |  |
| 500 | 138,9 | $\begin{gathered} V_{k} \\ x \\ p_{t} \\ N R \end{gathered}$ |  | $\begin{gathered} \hline 6,6 \\ 2,0 \\ 33,1 \\ 45 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 3,7 \\ 1,5 \\ 10,4 \\ 33 \end{gathered}$ | $\begin{aligned} & 2,4 \\ & 1,2 \\ & 4,3 \\ & 24 \end{aligned}$ | $\begin{array}{r} \hline 1,7 \\ 1,0 \\ 2,1 \\ 17 \end{array}$ | $\begin{aligned} & 1,2 \\ & 0,9 \\ & 1,1 \\ & 10 \end{aligned}$ | $\begin{gathered} 0,9 \\ 0,8 \\ 0,7 \\ 5 \end{gathered}$ |
| 600 | 166,7 | $\begin{gathered} V_{k} \\ \mathrm{P}_{\mathrm{t}} \\ \mathrm{NR} \\ \hline \end{gathered}$ |  |  | $\begin{gathered} 4,5 \\ 1,8 \\ 15,0 \\ 38 \\ \hline \end{gathered}$ | $\begin{array}{r} \hline 2,9 \\ 1,5 \\ 6,2 \\ 29 \\ \hline \end{array}$ | $\begin{aligned} & \hline 2,0 \\ & 1,2 \\ & 3,0 \\ & 21 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1,5 \\ & 1,0 \\ & 1,6 \\ & 15 \\ & \hline \end{aligned}$ | $\begin{gathered} 1,1 \\ 0,9 \\ 0,9 \\ 10 \end{gathered}$ |


| Flow rate |  | Dim | 150x150 | $225 \times 225$ | 300x300 | 375x375 | 450x450 | 525x525 | $600 \times 600$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Size | 6x6 | 9x9 | 12x12 | 15x15 | 18x18 | $21 \times 21$ | 24x24 |
| ( $\mathrm{m}^{3} / \mathrm{h}$ ) | (1/s) | $\mathrm{A}_{\mathrm{k}}$ | 0,0093 | 0,0209 | 0,0373 | 0,0582 | 0,0838 | 0,1141 | 0,1490 |
| 700 | 194,4 | $V_{k}$ |  |  | 5,2 | 3,3 | 2,3 | 1,7 | 1,3 |
|  |  | X |  |  | 2,1 | 1,7 | 1,4 | 1,2 | 1,1 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 20,4 | 8,4 | 4,0 | 2,2 | 1,3 |
|  |  | NR |  |  | 42 | 33 | 25 | 19 | 13 |
| 800 | 222,2 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 6,0 | 3,8 | 2,7 | 1,9 | 1,5 |
|  |  | X |  |  | 2,4 | 1,9 | 1,6 | 1,4 | 1,2 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  | 26,6 | 10,9 | 5,3 | 2,8 | 1,7 |
|  |  | NR |  |  | 45 | 36 | 28 | 22 | 17 |
| 900 | 250,0 | $V_{k}$ |  |  | 6,7 | 4,3 | 3,0 | 2,2 | 1,7 |
|  |  | X |  |  | 2,7 | 2,2 | 1,8 | 1,6 | 1,4 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  | 33,7 | 13,8 | 6,7 | 3,6 | 2,1 |
|  |  | NR |  |  | 48 | 39 | 31 | 25 | 20 |
| 1000 | 277,8 | $V_{k}$ |  |  | 7,4 | 4,8 | 3,3 | 2,4 | 1,9 |
|  |  | X |  |  | 3,0 | 2,4 | 2,0 | 1,7 | 1,5 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 41,6 | 17,1 | 8,2 | 4,4 | 2,6 |
|  |  | NR |  |  | 50 | 41 | 34 | 28 | 22 |
| 1200 | 333,3 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  | 5,7 | 4,0 | 2,9 | 2,2 |
|  |  | X |  |  |  | 2,9 | 2,4 | 2,1 | 1,8 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 24,6 | 11,9 | 6,4 | 3,8 |
|  |  | NR |  |  |  | 46 | 38 | 32 | 27 |
| 1400 | 388,9 | $V_{k}$ |  |  |  | 6,7 | 4,6 | 3,4 | 2,6 |
|  |  | x |  |  |  | 3,4 | 2,8 | 2,4 | 2,1 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 33,5 | 16,2 | 8,7 | 5,1 |
|  |  | NR |  |  |  | 50 | 42 | 36 | 30 |
| 1600 | 444,4 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  |  | 5,3 | 3,9 | 3,0 |
|  |  | X |  |  |  |  | 3,2 | 2,8 | 2,4 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  | 21,1 | 11,4 | 6,7 |
|  |  | NR |  |  |  |  | 46 | 39 | 34 |
| 1800 | 500,0 |  |  |  |  |  | 6,0 | 4,4 | 3,4 |
|  |  | X |  |  |  |  | 3,7 | 3,1 | 2,7 |
|  |  | $p_{\text {t }}$ |  |  |  |  | 26,7 | 14,4 | 8,4 |
|  |  | NR |  |  |  |  | 48 | 42 | 37 |
| 2000 | 555,6 | $V_{k}$ |  |  |  |  | 6,6 | 4,9 | 3,7 |
|  |  | X |  |  |  |  | 4,1 | 3,5 | 3,0 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  |  |  | 33,0 | 17,8 | 10,4 |
|  |  | NR |  |  |  |  | 51 | 45 | 39 |
| 2500 | 694,4 |  |  |  |  |  |  | 6,1 | 4,7 |
|  |  | X |  |  |  |  |  | 4,4 | 3,8 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  |  | 27,8 | 16,3 |
|  |  | NR |  |  |  |  |  | 50 | 45 |
| 3000 | 833,3 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  |  |  | 7,3 | 5,6 |
|  |  | X |  |  |  |  |  | 5,2 | 4,6 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  |  | 40,0 | 23,5 |
|  |  | NR |  |  |  |  |  | 55 | 49 |
| 3500 | 972,2 |  |  |  |  |  |  |  | 6,5 |
|  |  | X |  |  |  |  |  |  | 5,3 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  |  |  | 31,9 |
|  |  | NR |  |  |  |  |  |  | 53 |
| 4000 | 1111,1 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  |  |  |  | 7,5 |
|  |  | x |  |  |  |  |  |  | 6,1 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  |  |  | 41,7 |
|  |  | NR |  |  |  |  |  |  | 56 |

## Symbols:

$\mathrm{V}_{\mathrm{k}}=$ Effective velocity in $\mathrm{m} / \mathrm{s}$
$X=$ Throw in $m$
$\mathrm{P}_{\text {t }}=$ Total pressure in Pa
$N R=$ Noise level index in $d B$

## Quick Selection Table (Diffusers type 50 FR-2-L)

| Flow rate |  | Dim | $225 \times 150$ | $300 \times 150$ | $300 \times 225$ | $375 \times 225$ | $450 \times 225$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Size | $9 \times 6$ | $12 \times 6$ | $12 \times 9$ | $15 \times 9$ | $18 \times 9$ |
| ( $\mathrm{m}^{3} / \mathrm{h}$ ) | (1/s) | $\mathrm{A}_{\mathrm{k}}$ | 0,0140 | 0,0186 | 0,0279 | 0,0348 | 0,0418 |
| 100 | 27,8 | $\mathrm{V}_{\mathrm{k}}$ | 2,0 | 1,5 |  |  |  |
|  |  | X | 0,5 | 0,4 |  |  |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 3,0 | 1,7 |  |  |  |
|  |  | N R | 13 | 8 |  |  |  |
| 120 | 3 3,3 | $\mathrm{V}_{\mathrm{k}}$ | 2,4 | 1,8 |  |  |  |
|  |  | x | 0,6 | 0,5 |  |  |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 4,3 | 2,4 |  |  |  |
|  |  | N R | 18 | 12 |  |  |  |
| 140 | 38,9 | $\mathrm{V}_{\mathrm{k}}$ | 2,8 | 2,1 |  |  |  |
|  |  | X | 0,7 | 0,6 |  |  |  |
|  |  | $\mathrm{p}_{\text {t }}$ | 5,8 | 3,3 |  |  |  |
|  |  | N R | 22 | 16 |  |  |  |
| 160 | 44,4 | $\mathrm{V}_{\mathrm{k}}$ | 3,2 | 2,4 | 1,6 |  |  |
|  |  | x | 0,8 | 0,7 | 0,6 |  |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 7,6 | 4,3 | 1,9 |  |  |
|  |  | N R | 25 | 19 | 11 |  |  |
| 180 | 50,0 | $\mathrm{V}_{\mathrm{k}}$ | 3,6 | 2,7 | 1,8 |  |  |
|  |  | X | 0,9 | 0,8 | 0,6 |  |  |
|  |  | $\mathrm{p}_{\text {t }}$ | 9,6 | 5,4 | 2,4 |  |  |
|  |  | N R | 28 | 22 | 14 |  |  |
| 200 | 5 5,6 | $\mathrm{V}_{\mathrm{k}}$ | 4,0 | 3,0 | 2,0 | 1,6 |  |
|  |  | X | 1,0 | 0,9 | 0,7 | 0,6 |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 11,8 | 6,7 | 3,0 | 1,9 |  |
|  |  | N R | 31 | 25 | 17 | 12 |  |
| 225 | 62,5 | $\mathrm{V}_{\mathrm{k}}$ | 4,5 | 3 ,4 | 2,2 | 1,8 |  |
|  |  | X | 1,1 | 1,0 | 0,8 | 0,7 |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 14,9 | 8,5 | 3,8 | 2,4 |  |
|  |  | N R | 33 | 28 | 19 | 15 |  |
| 250 | 69,4 | $\mathrm{V}_{\mathrm{k}}$ | 5,0 | 3,7 | 2,5 | 2,0 | 1,7 |
|  |  | X | 1,2 | 1,1 | 0,9 | 0,8 | 0,7 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 18,5 | 10,5 | 4,6 | 3 , 0 | 2,1 |
|  |  | N R | 36 | 30 | 22 | 18 | 14 |
| 300 | 83,3 | $\mathrm{V}_{\mathrm{k}}$ | 6,0 | 4,5 | 3,0 | 2,4 | 2,0 |
|  |  | x | 1,5 | 1,3 | 1,1 | 0,9 | 0,9 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 26,6 | 15,1 | 6,7 | 4,3 | 3,0 |
|  |  | N R | 41 | 35 | 27 | 22 | 18 |
| 350 | 97,2 | $\mathrm{V}_{\mathrm{k}}$ | 6,9 | 5,2 | 3,5 | 2,8 | 2,3 |
|  |  | x | 1,7 | 1,5 | 1,2 | 1,1 | 1,0 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 36,2 | 20,5 | 9,1 | 5,9 | 4,1 |
|  |  | N R | 44 | 39 | 30 | 26 | 22 |
| 400 | 111 , 1 | $\mathrm{V}_{\mathrm{k}}$ | 7,9 | 6,0 | 4,0 | 3,2 | 2,7 |
|  |  | x | 2,0 | 1,7 | 1,4 | 1,3 | 1,1 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 47,2 | 26,8 | 11,9 | 7 ,6 | 5,3 |
|  |  | N R | 48 | 42 | 34 | 29 | 25 |
| 450 | 125,0 | $\mathrm{V}_{\mathrm{k}}$ |  | 6,7 | 4,5 | 3,6 | 3,0 |
|  |  | x |  | 1,9 | 1,6 | 1,4 | 1,3 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  | 33,9 | 15,1 | 9,7 | 6,7 |
|  |  | N R |  | 45 | 37 | 32 | 28 |
| 500 | 138,9 | $\mathrm{V}_{\mathrm{k}}$ |  | 7,5 | 5,0 | 4,0 | 3,3 |
|  |  | x |  | 2,2 | 1,8 | 1,6 | 1,4 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  | 41,8 | 18,6 | 11,9 | 8,3 |
|  |  | N R |  | 47 | 39 | 35 | 31 |
| 600 | 166,7 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 6,0 | 4,8 | 4,0 |
|  |  | x |  |  | 2,1 | 1,9 | 1,7 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 26,8 | 17,2 | 11,9 |
|  |  | N R |  |  | 44 | 39 | 35 |
| 700 | 194,4 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 7,0 | 5,6 | 4,7 |
|  |  | x |  |  | 2,5 | 2,2 | 2,0 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 36,4 | 23,4 | 16,2 |
|  |  | N R |  |  | 48 | 43 | 39 |
| 800 | 222,2 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  | 6,4 | 5,3 |
|  |  | x |  |  |  | 2,5 | 2,3 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 30,6 | 21,2 |
|  |  | N R |  |  |  | 46 | 43 |
| 900 | 250,0 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  | 7,2 | 6,0 |
|  |  | X |  |  |  | 2,8 | 2,6 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 38,7 | 26,8 |
|  |  | N R |  |  |  | 49 | 45 |

## Symbols:

$\mathrm{V}_{\mathrm{k}}=$ Effective velocity in $\mathrm{m} / \mathrm{s}$
$X=$ Throw in $m$
$\mathrm{P}_{\text {f }}=$ Total pressure in Pa
$N R=$ Noise level index in dB

The selection should take into account, for a given air flow rate, the noise level and the throw. The throws given in the table correspond to a maximum velocity in the occupied zone of $0,25 \mathrm{~m} / \mathrm{s}$.

## Quick Selection Table (Diffusers type 50 FR-3)

| Flow rate |  | Dim | $150 \times 150$ | $225 \times 225$ | $300 \times 300$ | $375 \times 375$ | $450 \times 450$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Size | $6 \times 6$ | 9x9 | $12 \times 12$ | $15 \times 15$ | $18 \times 18$ |
| ( $\mathrm{m}^{3} / \mathrm{h}$ ) | (1/s) | $\mathrm{A}_{\mathrm{k}}$ | 0,0089 | 0,0200 | 0,0355 | 0,0554 | 0,0798 |
| 100 | 27,8 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 3,1 \\ 0,6 \\ 8,5 \\ 17 \end{gathered}$ |  |  |  |  |
| 120 | 33,3 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 3,7 \\ 0,7 \\ 12,2 \\ 22 \end{gathered}$ |  |  |  |  |
| 140 | 38,9 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} 4,4 \\ 0,8 \\ 16,6 \\ 25 \end{gathered}$ | $\begin{gathered} 1,9 \\ 0,6 \\ 3,3 \\ 9 \end{gathered}$ |  |  |  |
| 160 | 44,4 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} 5,0 \\ 1,0 \\ 21,7 \\ 29 \end{gathered}$ | $\begin{aligned} & \hline 2,2 \\ & 0,6 \\ & 4,3 \\ & 12 \end{aligned}$ |  |  |  |
| 180 | 50,0 | $\begin{gathered} \hline \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 5,6 \\ 1,1 \\ 27,5 \\ 32 \end{gathered}$ | $\begin{aligned} & \hline 2,5 \\ & 0,7 \\ & 5,4 \\ & 15 \end{aligned}$ |  |  |  |
| 200 | 55,6 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} 6,2 \\ 1,2 \\ 33,9 \\ 34 \end{gathered}$ | $\begin{aligned} & \hline 2,8 \\ & 0,8 \\ & 6,7 \\ & 18 \\ & \hline \end{aligned}$ | $\begin{gathered} 1,6 \\ 0,6 \\ 2,1 \\ 6 \end{gathered}$ |  |  |
| 250 | 69,4 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} \hline 7,8 \\ 1,5 \\ 53,0 \\ 40 \end{gathered}$ | $\begin{gathered} 3,5 \\ 1,0 \\ 10,5 \\ 23 \end{gathered}$ | $\begin{gathered} \hline 2,0 \\ 0,8 \\ 3,3 \\ 12 \end{gathered}$ |  |  |
| 300 | 83,3 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ | $\begin{gathered} 9,4 \\ 1,8 \\ 76,3 \\ 44 \end{gathered}$ | $\begin{gathered} 4,2 \\ 1,2 \\ 15,1 \\ 28 \end{gathered}$ | $\begin{array}{r} \hline 2,3 \\ 0,9 \\ 4,8 \\ 16 \end{array}$ | $\begin{gathered} 1,5 \\ 0,7 \\ 2,0 \\ 7 \end{gathered}$ |  |
| 350 | 97,2 | $\begin{gathered} \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} 4,9 \\ 1,4 \\ 20,6 \\ 32 \end{gathered}$ | $\begin{gathered} 2,7 \\ 1,1 \\ 6,5 \\ 20 \\ \hline \end{gathered}$ | $\begin{gathered} 1,8 \\ 0,8 \\ 2,7 \\ 11 \end{gathered}$ |  |
| 400 | 111,1 | $\begin{gathered} \hline \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} 5,6 \\ 1,6 \\ 26,9 \\ 35 \end{gathered}$ | $\begin{gathered} \hline 3,1 \\ 1,2 \\ 8,5 \\ 23 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 2,0 \\ 1,0 \\ 3,5 \\ 14 \end{gathered}$ |  |
| 450 | 125,0 | $\begin{gathered} V_{k} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} 6,3 \\ 1,8 \\ 34,0 \\ 38 \\ \hline \end{gathered}$ | $\begin{gathered} 3,5 \\ 1,4 \\ 10,8 \\ 26 \end{gathered}$ | $\begin{array}{r} 2,3 \\ 1,1 \\ 4,4 \\ 17 \\ \hline \end{array}$ | $\begin{array}{r} 1,6 \\ 0,9 \\ 2,1 \\ 10 \\ \hline \end{array}$ |
| 500 | 138,9 | $\begin{gathered} \hline \mathrm{V}_{\mathrm{k}} \\ \mathrm{X} \\ \mathrm{p}_{\mathrm{t}} \\ \mathrm{NR} \end{gathered}$ |  | $\begin{gathered} 6,9 \\ 2,0 \\ 42,0 \\ 40 \end{gathered}$ | $\begin{gathered} 3,9 \\ 1,5 \\ 13,3 \\ 29 \end{gathered}$ | $\begin{gathered} \hline 2,5 \\ 1,2 \\ 5,5 \\ 20 \end{gathered}$ | $\begin{gathered} \hline 1,7 \\ 1,0 \\ 2,6 \\ 12 \end{gathered}$ |


| Flow rate |  | Dim | $150 \times 150$ | $225 \times 225$ | $300 \times 300$ | $375 \times 375$ | $450 \times 450$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Size | 6x6 | 9x9 | $12 \times 12$ | $15 \times 15$ | 18×18 |
| ( $\mathrm{m}^{3} / \mathrm{h}$ ) | (1/s) | $\mathrm{A}_{\mathrm{k}}\left(\mathrm{m}^{2}\right)$ | 0,0089 | 0,0200 | 0,0355 | 0,0554 | 0,0798 |
| 600 | 166,7 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 4,7 | 3,0 | 2,1 |
|  |  | X |  |  | 1,8 | 1,4 | 1,2 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 19,2 | 7,9 | 3,8 |
|  |  | NR |  |  | 33 | 24 | 17 |
| 700 | 194,4 | $V_{k}$ |  |  | 5,5 | 3,5 | 2,4 |
|  |  | X |  |  | 2,1 | 1,7 | 1,4 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 26,1 | 10,7 | 5,2 |
|  |  | NR |  |  | 37 | 28 | 21 |
| 800 | 222,2 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 6,3 | 4,0 | 2,8 |
|  |  | X |  |  | 2,4 | 1,9 | 1,6 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 34,1 | 14,0 | 6,7 |
|  |  | NR |  |  | 40 | 31 | 24 |
| 900 | 250,0 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 7,0 | 4,5 | 3,1 |
|  |  | X |  |  | 2,7 | 2,2 | 1,8 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 43,1 | 17,7 | 8,5 |
|  |  | NR |  |  | 43 | 34 | 27 |
| 1000 | 277,8 | $V_{k}$ |  |  | 7,8 | 5,0 | 3,5 |
|  |  | X |  |  | 3,0 | 2,4 | 2,0 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 53,3 | 21,9 | 10,5 |
|  |  | NR |  |  | 46 | 37 | 29 |
| 1200 | 333,3 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  | 6,0 | 4,2 |
|  |  | X |  |  |  | 2,9 | 2,4 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 31,5 | 15,2 |
|  |  | NR |  |  |  | 41 | 34 |
| 1400 | 388,9 | $V_{k}$ |  |  |  | 7,0 | 4,9 |
|  |  | X |  |  |  | 3,4 | 2,8 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 42,9 | 20,7 |
|  |  | NR |  |  |  | 45 | 38 |
| 1600 | 444,4 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  | 8,0 | 5,6 |
|  |  | X |  |  |  | 3,9 | 3,2 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 56,0 | 27,0 |
|  |  | NR |  |  |  | 48 | 41 |
| 1800 | 500,0 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  |  | 6,3 |
|  |  | X |  |  |  |  | 3,6 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  | 34,2 |
|  |  | NR |  |  |  |  | 44 |
| 2000 | 555,6 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  |  | 7,0 |
|  |  | X |  |  |  |  | 4,0 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  | 42,2 |
|  |  | NR |  |  |  |  | 47 |
| 2500 | 694,4 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  |  | 8,7 |
|  |  | X |  |  |  |  | 5,0 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  | 65,9 |
|  |  | NR |  |  |  |  | 52 |
| 3000 | 833,3 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  |  | 10,4 |
|  |  | X |  |  |  |  | 6,0 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  | 94,9 |
|  |  | NR |  |  |  |  | 57 |

## Symbols:

$\mathrm{V}_{\mathrm{k}}=$ Effective velocity in $\mathrm{m} / \mathrm{s}$
$\mathrm{X}^{\mathrm{k}}=$ Throw in m
$\mathrm{P}_{\mathrm{L}}=$ Total pressure in Pa
$N R=$ Noise level index in $d B$

The selection should take into account, for a given air flow rate, the noise level and the throw. The throws given in the table correspond to a maximum velocity in the occupied zone of $0,25 \mathrm{~m} / \mathrm{s}$.

## General information

- The special design of the range of square and rectangular diffusers provides to any kind of space the requirements of decoration which today's architecture demands.
- The broad range of products and possibilities to orientate the air flow in 1, 2, 3 or 4 ways, make them particularly indicated for spaces where a particular zone has to be treated, in geometrically irregular spaces or off-centre parts of the space (conjunction of wall and ceiling, etc.).
- By means of laboratory tests it has been demonstrated that these diffusers are ideal for variable volume systems, due to its blade design, with which an adherent jet is obtained (Coanda effect) with a highly satisfactory efficiency, specially recommendable in cold air installations.
- The volume control damper of the flap type (59MM) is manually adjustable, while the opposed blade type (O) can be adjusted by means of a plane screwdriver.
- All square and rectangular diffuser types have standardised neck dimensions for duct mounting according to ISO standard.


## General notes on the quick selection tables :

- These selection tables are based on full-scale laboratory tests according to standards ISO 5219 and ISO 5135 and 3741.
- The jet is adherent, i.e. the diffuser is mounted aligned with the ceiling.
- Room height is $3 \pm 0,5 \mathrm{~m}$.
- Sound index NR is based on sound power, without room attenuation and without damper (mounting according to ISO).
- For the diffuser type 50 FR-2-L the indicated pressure is the total pressure in the duct, before the plenum, while the sound index NR is based on sound power, without room attenuation and without damper, but with plenum (mounting according to ISO for false ceilings).
- Throws given correspond to a maximum velocity $\left(\mathrm{V}_{\mathrm{z}}\right)$ of $0,25 \mathrm{~m} / \mathrm{s}$ in the occupied zone.
- For types 50 FR-4, 50 FR-2 and 50 FR-2-L, the diffuser is placed in the centre of a square room.

- For type 50 FR-1 the diffuser is placed in the longitudinal axis of the ceiling, close to the wall, with room dimensions $L=$ length and $A=$ width and with a ratio $A / L=0,67$.

- For type 50 FR-3 the diffuser is placed in the longitudinal axis of the ceiling of a square room ( $A / L=1$ ), at a distance of $\mathrm{L} / 4$ to the wall.

- To obtain the pressure loss or sound level of the square and rectangular diffusers with damper (59MM or O), see the corresponding graphs on page 14.


## Example of selection

## Requirements:

Air flow rate $\qquad$ $400 \mathrm{~m}^{3} / \mathrm{h}$
Throw $\qquad$ 1 to $1,5 \mathrm{~m}$
Sound level
$\qquad$ below 30 dB
Application Private offices
Required pressure loss below 10 Pa
Exit velocity $\qquad$ below $3 \mathrm{~m} / \mathrm{s}$
$\mathrm{N}^{\circ}$ of directions $\qquad$ 4

## Solution:

With the selection table for diffusers type 50 FR-4 and following the general criterion that for comfort installations the recommended discharge velocity for this type of diffusers lies between 2 and $3,5 \mathrm{~m} / \mathrm{s}$, we obtain:

Q (Air flow rate) $\qquad$ $400 \mathrm{~m}^{3} / \mathrm{h}(166,7 \mathrm{l} / \mathrm{s})$
X (Throw) 1,3 m
NR (Sound level) 24 dB
$P_{t}$ (Pressure loss) $\qquad$ $4,6 \mathrm{~Pa}$
$\mathrm{V}_{\mathrm{k}}$ (Effective velocity) $\qquad$ 2,6 m/s

Diffuser 50 FR-4 size $12 \times 12$ ( $300 \times 300 \mathrm{~mm}$ ) (with optional delivery of volume control damper and mounting accessories).
Observing the results, the data obtained fulfil the requirements of the project.

## Throw correction factor for room width/length ratio.

This factor, called $C_{a}$, is given by the ratio of room width and length and is applicable to diffusers type 50 FR-1, 50 FR-2-L and 50 FR-3. For types 50 FR-4 and 50 FR-2 the value of $C_{a}$ equals 1 , since they have been tested in a square room ( $\mathrm{A} / \mathrm{L}=1$ )


## Throw correction factor for distance of diffuser to ceiling ( $C_{h}$ )

For adherent jets, i.e. diffuser aligned with ceiling : $\mathrm{C}_{\mathrm{h}}=1$
For free jets, with the diffuser separated from the ceiling :
$C_{h}=1,4$
The corrected throw $\left(X_{c}\right)$ is obtained by :

$$
X_{c}=X \cdot C_{a} \cdot C_{h}
$$

## Useful recommendations

## 1. Maximum distance of diffuser to ceiling.

To obtain an adhering jet with cold air, it is advisable not to exceed the distance of the diffuser with respect to the ceiling (h max.) and the temperature difference $D_{t}$ (difference between room and supply air temperature) according to the following tables.

For type 50 FR-4:

| $\Delta \mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$ | 0 | 6 | 9 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| h máx $(\mathrm{m})$ | 0,20 | 0,10 | 0,07 | 0,05 |

For types 50 FR-1, 50 FR-2, 50 FR-2-L, 50 FR-3:

| $\Delta \mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$ | 0 | 6 | 9 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| h máx $(\mathrm{m})$ | 0,38 | 0,21 | 0,14 | 0,11 |

## 2. Minimum recommended velocity in occupied zone, $\mathrm{V}_{\mathrm{z}}$.

Due to the difference in the temperature of the air in the room with respect to the cold supply air, the following minimum velocities $V_{z}$ are recommended :

For type 50 FR-4:

| $\Delta \mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$ | 0 | 6 | 9 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~V}_{\mathrm{z}}(\mathrm{m} / \mathrm{s})$ | 0,15 | 0,15 | 0,20 | 0,25 |

For types 50 FR-2, 50 FR-2-L:

| $\Delta \mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$ | 0 | 6 | 9 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~V}_{\mathrm{z}}(\mathrm{m} / \mathrm{s})$ | 0,15 | 0,18 | 0,23 | 0,28 |

For types 50 FR-1, 50 FR-3:
(diffuser close to exterior / interior wall resp.)

| $\Delta \mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$ | 0 | 6 | 9 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~V}_{\mathrm{z}}(\mathrm{m} / \mathrm{s})$ | 0,15 | 0,20 | 0,25 | 0,30 |
|  | 0,15 | 0,25 | 0,30 | 0,35 |

## 3. Flow rate measurement

The air flow rate $\left(q_{v}\right)$ is obtained from the product of the effective area of the diffuser $\left(A_{k}\right)$ and its effective velocity $\left(\mathrm{V}_{k}\right)$, measured with a hot-wire anemometer (e.g. type TSIVELOCICALC):

$$
\mathrm{q}_{\mathrm{v}}\left(\mathrm{~m}^{3} / \mathrm{h}\right)=\mathrm{A}_{\mathrm{k}}\left(\mathrm{~m}^{2}\right) \cdot \mathrm{V}_{\mathrm{k}}(\mathrm{~m} / \mathrm{s}) \cdot 3600
$$

The value of $A_{k}$ is obtained from the quick selection tables. E.g. for a diffuser type 50 FR-4 of size $12 \times 12$ the $A_{k}$ is found to be $0,0435 \mathrm{~m}^{2}$.


## 4. Induction effect

It is also possible to obtain the air flow rate induced in the room from the so-called induction factor $\left(q_{x} / q_{0}\right)$ which is determined by the parameters $X_{c}$ in $m$ (corrected throw) and the effective discharge area $A_{k}$ in $\mathrm{m}^{2}$, according to the following figures






## 5. Volume control dampers 59 MM and " O ".

## Technical data

The volume control dampers modify the values of sound level and pressure loss given in the selection tables. Hereafter, and in the corresponding graphs sound levels and total pressure losses $\left(\Delta \mathrm{P}_{\mathrm{t}}\right)$ are presented for the diffuser including the volume control damper, as a function of the parameters $\mathrm{V}_{\mathrm{k}}$ (effective velocity) and percentage of opening of the damper.

### 5.1 Damper 59 MM



### 5.2 Damper "O".



A correction factor should be applied to the sound level as a function of $A_{k}$ of the diffuser according to the following table.

| $\mathrm{A}_{\mathrm{k}}\left(\mathrm{m}^{2}\right)$ | 0,01 | 0,02 | 0,03 | 0,05 | 0,1 | 0,2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NR to be added | $-5,2$ | $-1,9$ | 0 | 2,4 | 5,8 | 9,1 |

A correction factor should be applied to the sound level as a function of the nominal size of the diffuser according to the following table.

| Size | $6 \times 6$ | $9 \times 9$ | $12 \times 12$ |
| :---: | :---: | :---: | :---: |
| Nominal dim. in mm | $150 \times 150$ | $225 \times 225$ | $300 \times 300$ |
| NR to be added | -2 | 1 | 3 |

## Other accessories and mounting systems



## Square-circular transformation piece

Upon request and after consultation, square-circular transformation pieces can be provided for use with circular ducts.

Possible combinations of square diffusers 50 FR-4, 50 FR-1, 50 FR-2, 50 FR-3 with volume control damper and mounting system

| $\begin{aligned} & 50 \text { FR-4, 50FR-1 } \\ & 50 \text { FR-2, 50FR-3 } \\ & \hline \end{aligned}$ |  | damper |  | mounting system |  |  | damper + mounting system |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| size | dimension | 59 MM | 0 | PM | PMC | SM | $59 \mathrm{MM}+\mathrm{PM}$ | $59 \mathrm{MM}+\mathrm{PMC}$ | 59 MM + SM | 0 + PM | 0 + PMC | $0+$ SM |
| $6 \times 6$ | $150 \times 150$ | $\otimes$ |  |  | $\otimes$ |
| $9 \times 9$ | $225 \times 225$ | $\otimes$ |  |  | $\otimes$ |
| $12 \times 12$ | $300 \times 300$ | $\otimes$ |  |  | $\otimes$ |
| $15 \times 15$ | $375 \times 375$ |  | $\otimes$ |  |  | $\otimes$ |  |  |  |  |  | $\otimes$ |
| $18 \times 18$ | $450 \times 450$ |  | $\otimes$ |  |  | $\otimes$ |  |  |  |  |  | $\otimes$ |
| $21 \times 21$ | $525 \times 525$ |  | $\otimes$ |  |  | $\otimes$ |  |  |  |  |  | $\otimes$ |
| $24 \times 24$ | $600 \times 600$ |  | $\otimes$ |  |  | $\otimes$ |  |  |  |  |  | $\otimes$ |

## Notes

1. Diffuser type 50 FR-3 can be supplied only upto and including size $18 \times 18$ (450x450 mm)
2. All square and rectangular diffusers can incorporate the directional grille $G$ as an accessory, compatible with damper O and mounting system SM. The directional grille is not compatible with the mounting bridges (PM and PMC) and the blade damper (59 MM).

Possible combinations of rectangular diffusers 50 FR-2-L with volume control damper and mounting system

| 50 FR-2-L |  | damper |  | mounting system |  |  | damper + mounting system |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| size | dimension | 59 MM | 0 | PM | PMC | SM | $0+\mathrm{PM}$ | $0+$ PMC | $0+$ SM |
| $9 \times 6$ | $225 \times 150$ |  | $\otimes$ |  |  | $\otimes$ |  |  | $\otimes$ |
| $12 \times 6$ | $300 \times 150$ |  | $\otimes$ |  |  | $\otimes$ |  |  | $\otimes$ |
| $12 \times 9$ | $300 \times 225$ |  | $\otimes$ |  |  | $\otimes$ |  |  | $\otimes$ |
| $15 \times 9$ | $375 \times 225$ |  | $\otimes$ |  |  | $\otimes$ |  |  | $\otimes$ |
| $18 \times 9$ | $450 \times 225$ |  | $\otimes$ |  |  | $\otimes$ |  |  | $\otimes$ |

## Types and directions of off-standard rectangular diffusers

Other, off-standard, configurations and sizes exist which can be provided upon request and after previous
consultation. These rectangular diffuser types only can incorporate damper type O and/or mounting system SM and/or directional grille G.

Being the 1st dimension always the diffuser length and the 2nd the width, the dimensions of the rectangular diffusers which can be supplied are given in the following table.


| Size | Dimension | Diffuser type |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 50 FR-1-L | 50 FR-1-S | 50 FR-2-S | 50 FR-3-S | 50 FR-3-L | 50 FR-3-L-1 | 50 FR-4-B |
| $9 \times 6$ | $225 \times 150$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |
| $12 \times 6$ | $300 \times 150$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  | $\otimes$ |
| $12 \times 9$ | $300 \times 225$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |
| $15 \times 6$ | $375 \times 150$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  | $\otimes$ | $\otimes$ |
| $15 \times 9$ | $375 \times 225$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |
| $15 \times 12$ | $375 \times 300$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |
| $18 \times 6$ | $450 \times 150$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  | $\otimes$ | $\otimes$ |
| $18 \times 9$ | $450 \times 225$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  | $\otimes$ |
| $18 \times 12$ | $450 \times 300$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |
| $18 \times 15$ | $450 \times 375$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |
| $21 \times 6$ | $525 \times 150$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  | $\otimes$ | $\otimes$ |
| $21 \times 9$ | $525 \times 150$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  | $\otimes$ | $\otimes$ |
| $21 \times 12$ | $525 \times 300$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |
| $21 \times 15$ | $525 \times 375$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |
| $21 \times 18$ | $525 \times 450$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |
| $24 \times 6$ | $600 \times 150$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  | $\otimes$ | $\otimes$ |
| $24 \times 9$ | $600 \times 225$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  | $\otimes$ | $\otimes$ |
| $24 \times 12$ | $600 \times 300$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  | $\otimes$ |
| $24 \times 15$ | $600 \times 375$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |
| $24 \times 18$ | $600 \times 450$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |
| $24 \times 21$ | $600 \times 525$ | $\otimes$ | $\otimes$ | $\otimes$ | $\otimes$ |  |  | $\otimes$ |

## Square perforated face diffusers 54 FR



| $54-F R$ | Series, steel sheet diffuser |
| :---: | :---: |
| -I | for supply air |
| -R | for return air |
| -1 | 1 direction |
| -2 | 2 directions |
| -4 | 4 directions |
| -0 | vertical discharge (without directional plates) |
| - | without plenum |
| +PS | with plenum, with top duct connection |
| +PL | with plenum, with lateral duct connection |
| Size | From Ø160-ஏ 300 ,to |
| Dimensions | Ø315-Ø625, according to table |

## Description

Type 54 FR, steel sheet square perforated face diffuser.

## Finishes

Painted in white RAL 9010.
Special finishes available upon request.

## General dimensions

See page 19.

## 54-FR-I

Square perforated face diffuser for supply air. By means of the 4 interior directional plates discharge can be obtained in 1, 2 or 4 directions (54 FR-I-1, 54 FR-I-2, 54 FR-I-4). When these plates are removed a vertical discharge is obtained ( 54 FR-I-0). The plenum is provided with a normalised duct connection according to ISO standard.

## 54-FR-R

Square perforated face diffuser for return air. For both this type and the supply version the duct connection can be top or lateral. The plenum is provided with a normalised duct connection according to ISO standard.

## Identification

The perforated sheet is easily removable by means of pressure clips, accessible from the outside, so as to be able to change the orientation of the directional plates, which are fixed to the perforate sheet by means of springs. The possibility to change the orientation of these plates makes this diffuser ideal for installations where large air flow rates with short throws are required.

## General dimensions



## 54-FR-I

| NOM INAL | $A$ | $B_{\oplus_{1}^{0}}$ | $C$ | $\varnothing N$ | $E$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $160-300$ | 251 | 299 | 75 | 160 | 125 |
| $200-400$ | 351 | 399 | 75 | 200 | 125 |
| $250-500$ | 451 | 499 | 100 | 250 | 150 |
| $315-600$ | 547 | 595 | 100 | 315 | 150 |
| $315-625$ | 576 | 624 | 100 | 315 | 150 |



## 54-FR-R

## Quick Selection Table

Diffusers type 54-FR-I-1


Diffusers type 54-FR-I-2

| Flow rate |  | $\begin{gathered} \mathrm{m} m \\ \mathrm{~A}_{\mathrm{k}} \end{gathered}$ | $\begin{array}{\|lllll} 3 & 0 & 0 & x & 3 \end{array} 0000$ | $\begin{array}{\|c\|c\|c\|} \hline 400 \times 400 \\ 0,05910 \\ \hline \end{array}$ | $\begin{array}{\|l} 5000 \times 500 \\ 0,09760 \\ \hline \end{array}$ | $\begin{array}{\|llllll} \hline 6 & 0 & 0 & 6 & 0 & 0 \\ 0,1 & 4 & 5 & 7 & 0 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 625 \times 625 \\ 0,15930 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ( $\mathrm{m}^{3 / \mathrm{h}}$ ) | (1/s) |  |  |  |  |  |  |
| 100 | 27,8 | $\mathrm{V}_{\mathrm{k}}$ | 0,9 | 0,5 | 0,3 |  |  |
|  |  | X | 0,8 | 0,6 | 0,4 |  |  |
|  |  | $\mathrm{p}_{\text {t }}$ | 3,5 | 0,9 | 0,3 |  |  |
|  |  | N R | 8 |  |  |  |  |
| 120 | 33,3 | $\mathrm{V}_{\mathrm{k}}$ | 1,1 | 0,6 | 0,3 |  |  |
|  |  | X | 1,0 | 0,7 | 0,5 |  |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 5,0 | 1,3 | 0,5 |  |  |
|  |  | N R | 14 |  |  |  |  |
| 140 | 38,9 | $\mathrm{V}_{\mathrm{k}}$ | 1,3 | 0,7 | 0,4 | 0,3 |  |
|  |  | X | 1,1 | 0,8 | 0,6 | 0,5 |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 6,8 | 1,8 | 0,7 | 0,3 |  |
|  |  | N R | 20 |  |  |  |  |
| 160 | 44,4 | $\mathrm{V}_{\mathrm{k}}$ | 1,5 | 0,8 | 0,5 | 0,3 |  |
|  |  | X | 1,3 | 0,9 | 0,7 | 0,6 |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 8,9 | 2,3 | 0,9 | 0,4 |  |
|  |  | N R | 24 |  |  |  |  |
| 180 | 50,0 | $\mathrm{V}_{\mathrm{k}}$ | , 7 | 0,8 | 0,5 | 0,3 | 0,3 |
|  |  | X | 1,4 | 1 ,0 | 0, 8 | 0,7 | 0,6 |
|  |  | $\mathrm{p}_{\text {t }}$ | 11,3 | 2,9 | 1,1 | 0,5 | 0,4 |
|  |  | N R | 28 | 8 |  |  |  |
| 200 | 55,6 | $\mathrm{V}_{\mathrm{k}}$ | 1,8 | 0,9 | 0,6 | 0,4 | 0,3 |
|  |  | ${ }^{\text {x }}$ | 1,6 | 1,1 | 0,9 | 0,7 | 0,7 |
|  |  | $\mathrm{p}_{\text {t }}$ | 13,9 | 3,6 | 1,3 | 0,6 | 0,5 |
|  |  | N R | 31 | 12 |  |  |  |
| 250 | 69,4 | $\mathrm{V}_{\mathrm{k}}$ | 2,3 | 1,2 | 0,7 | 0,5 | 0,4 |
|  |  | x | 2,0 | 1,4 | 1,1 | 0,9 | 0,9 |
|  |  | $\mathrm{p}_{\text {t }}$ | 21,8 | 5,7 | 2,1 | 0,9 | 0,8 |
|  |  | N R | 39 | 19 | 5 |  |  |
| 300 | 83,3 | $\mathrm{V}_{\mathrm{k}}$ | 2,8 | 1,4 | 0,9 | 0,6 | 0,5 |
|  |  | X | 2,4 | 1,7 | 1,3 | 1,1 | 1,0 |
|  |  | $\mathrm{p}_{\text {t }}$ | 31,4 | 8,2 | 3,0 | 1,3 | 1,1 |
|  |  | N R | 44 | 25 | 11 |  |  |
| 350 | 97,2 | $\mathrm{V}_{\mathrm{k}}$ |  | 1,6 | 1,0 | 0,7 | 0,6 |
|  |  | x |  | 2,0 | 1,6 | 1,3 | 1,2 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  | 11,1 | 4,1 | 1,8 | 1,5 |
|  |  | N R |  | 30 | 16 |  |  |
| 400 | 111,1 | $\mathrm{V}_{\mathrm{k}}$ |  | 1,9 | 1,1 | 0,8 | 0,7 |
|  |  | X |  | 2,3 | 1,8 | 1,5 | 1,4 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  | 14,6 | 5,3 | 2,4 | 2,0 |
|  |  | N R |  | 35 | 20 | 9 |  |
| 500 | 138,9 | $\mathrm{V}_{\mathrm{k}}$ |  | 2,4 | 1,4 | 1,0 | 0,9 |
|  |  | x |  | 2,9 | 2,2 | 1,8 | 1,7 |
|  |  | $\mathrm{p}_{\text {t }}$ |  | 22,8 | 8,3 | 3,7 | 3,1 |
|  |  | $N \mathrm{R}$ |  | 42 | 27 | 16 | 13 |
| 600 | 166,7 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 1,7 | 1,1 | 1,0 |
|  |  | x |  |  | 2,7 | 2,2 | 2,1 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 12,0 | 5,4 | 4,5 |
|  |  | N R |  |  | 33 | 22 | 19 |
| 700 | 194,4 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 2,0 | 1,3 | 1,2 |
|  |  | x |  |  | 3,1 | 2,6 | 2,4 |
|  |  | $\mathrm{p}_{\text {, }}$ |  |  | 16,4 | 7,3 | 6,1 |
|  |  | N R |  |  | 39 | 27 | 24 |
| 800 | 222,2 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 2,3 | 1.5 | 1,4 |
|  |  | x |  |  | 3,6 | 2,9 | 2,8 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  | 21,4 | 9,6 | 8,0 |
|  |  | N R |  |  | 43 | 31 | 29 |
| 900 | 250,0 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  | 1,7 | 1,6 |
|  |  | x |  |  |  | 3,3 | 3,1 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  |  | 12,1 | 10,1 |
|  |  | N R |  |  |  | 35 | 33 |
| 1000 | 277,8 |  |  |  |  | 1,9 | 1,7 |
|  |  | X |  |  |  | 3,6 | 3,5 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  |  | 15,0 | 12,5 |
|  |  | N R |  |  |  | 39 | 36 |
| 1200 | 333,3 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  | 2,3 | 2,1 |
|  |  | x |  |  |  | 4,4 | 4,2 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 21,6 | 18,0 |
|  |  | N R |  |  |  | 45 | 42 |
| 1400 | 388,9 |  |  |  |  |  | 2,4 |
|  |  | X |  |  |  |  | 4,9 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  | T |  | 24,6 |
|  |  | N R |  |  |  |  | 47 |
| 1600 | 444,4 |  |  |  |  |  | 2,8 |
|  |  | X |  |  | $\longrightarrow$ |  | 5,6 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  |  |  | 32,1 |
|  |  | N R |  |  |  |  | 52 |
| 1800 | 500,0 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  |  | 3,1 |
|  |  | x |  |  |  |  | 6,3 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  |  |  | 40,6 |
|  |  | N R |  |  |  |  | 55 |

## Symbols :

$V_{k}=$ Effective velocity in $\mathrm{m} / \mathrm{s}$
$X=$ Throw in $m$
$\mathrm{P}=$ Total pressure in Pa
$N R=$ Noise level index in dB

## Quick Selection Table

Diffusers type 54-FR-I-4

| Flow | rate | mm | $300 \times 300$ | $400 \times 400$ | $500 \times 500$ | $600 \times 600$ | $625 \times 625$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ( $\mathrm{m}^{3} / \mathrm{h}$ ) | (1/s) | $\mathrm{A}_{\mathrm{k}}$ | 0,03020 | 0,05910 | 0,09760 | 0,14570 | 0,15930 |
| 100 | 27,8 | $\mathrm{V}_{\mathrm{k}}$ | 0,9 | 0,5 | 0,3 |  |  |
|  |  | x | 0,6 | 0,4 | 0,3 |  |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 3,5 | 0,9 | 0,3 |  |  |
|  |  | N R | 8 |  |  |  |  |
| 120 | 3 3, 3 | $\mathrm{V}_{\mathrm{k}}$ | 1,1 | 0,6 | 0,3 |  |  |
|  |  | $\times$ | 0,7 | 0,5 | 0,4 |  |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 5,0 | 1,3 | 0,5 |  |  |
|  |  | N R | 14 |  |  |  |  |
| 140 | 38,9 | $\mathrm{V}_{\mathrm{k}}$ | 1,3 | 0,7 | 0,4 | 0,3 |  |
|  |  | X | 0,8 | 0,6 | 0,4 | 0,4 |  |
|  |  | $p_{\text {t }}$ | 6,8 | 1,8 | 0,7 | 0,3 |  |
|  |  | N R | 20 |  |  |  |  |
| 160 | 44,4 | $\mathrm{V}_{\mathrm{k}}$ | 1,5 | 0,8 | 0,5 | 0,3 |  |
|  |  | x | 0,9 | 0,6 | 0,5 | 0,4 |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 8,9 | 2,3 | 0,9 | 0,4 |  |
|  |  | N R | 24 |  |  |  |  |
| 180 | 50,0 | $\mathrm{V}_{\mathrm{k}}$ | 1,7 | 0,8 | 0,5 | 0,3 | 0,3 |
|  |  | x | 1,0 | 0,7 | 0,6 | 0,5 | 0,4 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 11,3 | 2,9 | 1,1 | 0,5 | 0,4 |
|  |  | N R | 28 | 8 |  |  |  |
| 200 | 55,6 | $\mathrm{V}_{\mathrm{k}}$ | 1,8 | 0,9 | 0,6 | 0,4 | 0,3 |
|  |  | X | 1,1 | 0,8 | 0,6 | 0,5 | 0,5 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 13,9 | 3,6 | 1,3 | 0,6 | 0,5 |
|  |  | N R | 31 | 12 |  |  |  |
| 250 | 69,4 | $\mathrm{V}_{\mathrm{k}}$ | 2,3 | 1,2 | 0,7 | 0,5 | 0,4 |
|  |  | x | 1,4 | 1,0 | 0,8 | 0,6 | 0,6 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 21,8 | 5,7 | 2,1 | 0,9 | 0,8 |
|  |  | N R | 39 | 19 | 5 |  |  |
| 300 | 83,3 | $\mathrm{V}_{\mathrm{k}}$ | 2,8 | 1,4 | 0,9 | 0,6 | 0,5 |
|  |  | x | 1,7 | 1,2 | 0,9 | 0,8 | 0,7 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 31,4 | 8,2 | 3,0 | 1,3 | 1,1 |
|  |  | N R | 44 | 25 | 11 |  |  |
| 350 | 97,2 | $\mathrm{V}_{\mathrm{k}}$ |  | 1,6 | 1,0 | 0,7 | 0,6 |
|  |  | X |  | 1,4 | 1,1 | 0,9 | 0,9 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  | 11,1 | 4,1 | 1,8 | 1,5 |
|  |  | N R |  | 30 | 16 |  |  |
| 400 | 111,1 | $\mathrm{V}_{\mathrm{k}}$ |  | 1,9 | 1,1 | 0,8 | 0,7 |
|  |  | X |  | 1,6 | 1,3 | 1,0 | 1,0 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  | 14,6 | 5,3 | 2,4 | 2,0 |
|  |  | N R |  | 35 | 20 | 9 |  |
| 500 | 138,9 | $\mathrm{V}_{\mathrm{k}}$ |  | 2,4 | 1,4 | 1,0 | 0,9 |
|  |  | X |  | 2,0 | 1,6 | 1,3 | 1,2 |
|  |  |  |  | 22,8 | 8,3 | 3,7 | 3,1 |
|  |  | N R |  | 42 | 27 | 16 | 13 |
| 600 | 166,7 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 1,7 | 1,1 | 1,0 |
|  |  | X |  |  | 1,9 | 1,5 | 1,5 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 12,0 | 5,4 | 4,5 |
|  |  | N R |  |  | 33 | 22 | 19 |
| 700 | 194,4 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 2,0 | 1,3 | 1,2 |
|  |  | X |  |  | 2,2 | 1,8 | 1,7 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  | 16,4 | 7,3 | 6,1 |
|  |  | N R |  |  | 39 | 27 | 24 |
| 800 | 222,2 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 2,3 | 1,5 | 1,4 |
|  |  | x |  |  | 2,5 | 2,1 | 2,0 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 21,4 | 9,6 | 8,0 |
|  |  | N R |  |  | 43 | 31 | 29 |
| 900 | 250,0 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  | 1,7 | 1,6 |
|  |  | X |  |  |  | 2,3 | 2,2 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 12,1 | 10,1 |
|  |  | N R |  |  |  | 35 | 33 |
| 1000 | 277,8 |  |  |  |  | 1,9 | 1,7 |
|  |  | X |  |  |  | 2,6 | 2,5 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 15,0 | 12,5 |
|  |  | N R |  |  |  | 39 | 36 |
| 1200 | 333,3 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  | 2,3 | 2,1 |
|  |  | X |  |  |  | 3,1 | 3,0 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 21,6 | 18,0 |
|  |  | N R |  |  |  | 45 | 42 |
| 1400 | 388,9 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  |  | 2,4 |
|  |  | X |  |  |  |  | 3,5 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  | 24,6 |
|  |  | N R |  |  |  |  | 47 |
| 1600 | 444,4 |  |  |  |  |  | 2,8 |
|  |  | X |  |  | $\longrightarrow$ |  | 3,9 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  | 32,1 |
|  |  | N R |  |  |  |  | 52 |
| 1800 | 500,0 |  |  |  |  |  | 3,1 |
|  |  | x |  |  |  |  | 4,4 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  |  | 40,6 |
|  |  | N R |  |  |  |  | 55 |

Diffusers type 54 FR-I-0 (vertical discharge)


## Symbols :

$\mathrm{V}_{\mathrm{k}}=$ Effective velocity in m/s
$X=$ Throw in $m$ (for 54 FR-I-0 : vertical throw)
$P=$ Total pressure in Pa
$N R=$ Noise level index in dB

## Quick Selection Table

## Diffusers type 54 FR-R (return air)

| Flow rate |  | mm | $300 \times 300$ | 400x400 | $500 \times 500$ | $600 \times 600$ | $625 \times 625$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ( $\mathrm{m}^{3} / \mathrm{h}$ ) | (1/s) | $\mathrm{A}_{\mathrm{k}}$ | 0,03020 | 0,05910 | 0,09760 | 0,14570 | 0,15930 |
| 100 | 27,8 | $\mathrm{V}_{\mathrm{k}}$ | 0,9 | 0,5 | 0,3 |  |  |
|  |  | $\begin{array}{r} p_{\mathrm{t}} \\ \mathrm{NR} \end{array}$ | 7,8 | 2,0 | 0,7 |  |  |
| 120 | 33,3 | $V_{k}$ | 1,1 | 0,6 | 0,3 |  |  |
|  |  | $p_{\text {t }}$ | 11,2 | 2,9 | 1,1 |  |  |
|  |  | NR |  |  |  |  |  |
| 140 | 38,9 | $\mathrm{V}_{\mathrm{k}}$ | 1,3 | 0,7 | 0,4 |  |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 15,3 | 4,0 | 1,5 |  |  |
|  |  | NR |  |  |  |  |  |
| 160 | 44,4 | $V_{k}$ | 1,5 | 0,8 | 0,5 |  |  |
|  |  | $p_{\text {t }}$ | 19,9 | 5,2 | 1,9 |  |  |
|  |  | NR | 5 |  |  |  |  |
| 180 | 50,0 | $\mathrm{V}_{\mathrm{k}}$ | 1,7 | 0,8 | 0,5 |  |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 25,2 | 6,6 | 2,4 |  |  |
|  |  | NR | 9 |  |  |  |  |
| 200 | 55,6 | $\mathrm{V}_{\mathrm{k}}$ | 1,8 | 0,9 | 0,6 | 0,4 |  |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 31,1 | 8,1 | 3,0 | 1,3 |  |
|  |  | NR | 12 |  |  |  |  |
| 250 | 69,4 | $\mathrm{V}_{\mathrm{k}}$ | 2,3 | 1,2 | 0,7 | 0,5 | 0,4 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 48,6 | 12,7 | 4,7 | 2,1 | 1,7 |
|  |  | NR | 20 |  |  |  |  |
| 300 | 83,3 | $\mathrm{V}_{\mathrm{k}}$ | 2,8 | 1,4 | 0,9 | 0,6 | 0,5 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 70,1 | 18,3 | 6,7 | 3,0 | 2,5 |
|  |  | NR | 26 | 6 |  |  |  |
| 350 | 97,2 | $\mathrm{V}_{\mathrm{k}}$ | 3,2 | 1,6 | 1,0 | 0,7 | 0,6 |
|  |  | $p_{\text {t }}$ | 95,3 | 24,9 | 9,1 | 4,1 | 3,4 |
|  |  | NR | 31 | 11 |  |  |  |
| 400 | 111,1 | $\mathrm{V}_{\mathrm{k}}$ | 3,7 | 1,9 | 1,1 | 0,8 | 0,7 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 124,5 | 32,5 | 11,9 | 5,4 | 4,5 |
|  |  | NR | 35 | 16 |  |  |  |
| 500 | 138,9 | $\mathrm{V}_{\mathrm{k}}$ | 4,6 | 2,4 | 1,4 | 1,0 | 0,9 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ | 194,6 | 50,8 | 18,6 | 8,4 | 7,0 |
|  |  | NR | 42 | 23 | 9 |  |  |
| 600 | 166,7 | $V_{k}$ |  | 2,8 | 1,7 | 1,1 | 1,0 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  | 73,2 | 26,8 | 12,0 | 10,1 |
|  |  | NR |  | 29 | 15 |  |  |
| 700 | 194,4 | $\mathrm{V}_{\mathrm{k}}$ |  | 3,3 | 2,0 | 1,3 | 1,2 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  | 99,6 | 36,5 | 16,4 | 13,7 |
|  |  | NR |  | 34 | 20 | 8 | 5 |
| 800 | 222,2 | $\mathrm{V}_{\mathrm{k}}$ |  | 3,8 | 2,3 | 1,5 | 1,4 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  | 130,1 | 47,7 | 21,4 | 17,9 |
|  |  | NR |  | 38 | 24 | 12 | 10 |
| 900 | 250,0 | $\mathrm{V}_{\mathrm{k}}$ |  | 4,2 | 2,6 | 1,7 | 1,6 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  | 164,6 | 60,4 | 27,1 | 22,7 |
|  |  | NR |  | 42 | 28 | 16 | 14 |
| 1000 | 277,8 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 2,8 | 1,9 | 1,7 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  | 74,5 | 33,4 | 28,0 |
|  |  | NR |  |  | 31 | 20 | 17 |
| 1200 | 333,3 | $V_{k}$ |  |  | 3,4 | 2,3 | 2,1 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  | 107,3 | 48,2 | 40,3 |
|  |  | NR |  |  | 37 | 26 | 23 |
| 1400 | 388,9 | $\mathrm{V}_{\mathrm{k}}$ |  |  | 4,0 | 2,7 | 2,4 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  | 146,1 | 65,5 | 54,8 |
|  |  | NR |  |  | 42 | 31 | 28 |
| 1600 | 444,4 | $V_{k}$ |  |  |  | 3,1 | 2,8 |
|  |  | $\mathrm{p}_{\text {t }}$ |  |  |  | 85,6 | 71,6 |
|  |  | NR |  |  |  | 35 | 33 |
| 1800 | 500,0 | $\mathrm{V}_{\mathrm{k}}$ |  |  |  | 3,4 | 3,1 |
|  |  | $\mathrm{p}_{\mathrm{t}}$ |  |  |  | 108,3 | 90,6 |
|  |  | NR |  |  |  | 39 | 36 |

## General notes on the quick selection tables :

- These selection tables are based on full-scale laboratory tests according to standards ISO 5219 and ISO 5135 and 3741.
- The jet is adherent (except for type 54 FR-I-0), i.e. the diffuser is mounted aligned with the ceiling.
- Room height is $3 \pm 0,5 \mathrm{~m}$.
- Sound index NR is based on sound power, without room attenuation and without damper (mounting according to ISO).
- Throws given correspond to a maximum velocity $\left(\mathrm{V}_{\mathrm{z}}\right)$ of $0,25 \mathrm{~m} / \mathrm{s}$ in the occupied zone.


## Example of selection

## Requirements:

Air flow rate $\qquad$ $600 \mathrm{~m}^{3} / \mathrm{h}$
Throw $\qquad$
$\qquad$ 2 to $2,5 \mathrm{~m}$
Sound level $\qquad$ below 35 dB
Application Restaurant
Required pressure loss $\qquad$ below 15 Pa
Exit velocity $\qquad$ below $2 \mathrm{~m} / \mathrm{s}$
$\mathrm{N}^{\circ}$ of directions $\qquad$ 4

## Solution:

With the selection table for diffusers type 54 FR-I-4 and following the general criterion that for comfort installations the recommended discharge velocity for this type of diffusers lies between 1 and $3 \mathrm{~m} / \mathrm{s}$, we obtain:

Q (Air flow rate) $\qquad$ $600 \mathrm{~m}^{3} / \mathrm{h}(166,7 \mathrm{l} / \mathrm{s})$
X (Throw)
NR (Sound level) 2,4 m
33 dB
$\mathrm{P}_{\mathrm{t}}{ }^{\mathrm{k}}$ (Pressure loss) $\qquad$
$\qquad$ 12 Pa

Diffuser 54-FR-I-4 size $500 \times 500$.
Observing the results, the data obtained fulfil the requirements of the project

## Symbols:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{k}} & =\text { Effective velocity in } \mathrm{m} / \mathrm{s} \\
\mathrm{P}_{\mathrm{t}} & =\text { Total pressure in } \mathrm{Pa} \\
\mathrm{NR} & =\text { Noise level index in } \mathrm{dB}
\end{aligned}
$$

